SAIV 2025

Posters
Poster

On the efficiency of training robust decision trees

Benedict Gerlach, Marie Anastacio, Holger Hoos

on  Tue, 14:30in  Coffee Break Roomfor  30min

Abstract

As machine learning gets adopted into the industry quickly, trustworthiness is increasingly in focus. Yet, efficiency and sustainability of robust training pipelines still have to be established. In this work, we consider a simple pipeline for training adversarially robust decision trees and investigate the efficiency of each step. Our pipeline consists of three stages. Firstly, we choose the perturbation size automatically for each dataset. For that, we introduce a simple algorithm, instead of relying on intuition or prior work. Moreover, we show that the perturbation size can be estimated from smaller models than the one intended for full training, and thus significant gains in efficiency can be achieved. Secondly, we train state-of-the-art adversarial training methods and evaluate them regarding both their training time and adversarial accuracy. Thirdly, we certify the robustness of each of the models thus obtained and investigate the time required for this. We find that verification time, which is critical to the efficiency of the full pipeline, is not correlated with training time.

 Overview  Program